

LIS009543451B2

(12) United States Patent

(10) Patent No.: US 9,543,451 B2 (45) Date of Patent: Jan. 10, 2017

(54) HIGH VOLTAGE JUNCTION FIELD EFFECT TRANSISTOR

(71) Applicant: **CSMC TECHNOLOGIES FAB1 CO., LTD.,** Jiangsu (CN)

(72) Inventor: Guangtao Han, Jiangsu (CN)

(73) Assignee: CSMC TECHNOLOGIES FAB1 CO.,

LTD., Jiangsu (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/407,599

(22) PCT Filed: Jun. 10, 2013

(86) PCT No.: PCT/CN2013/077119

§ 371 (c)(1),

(2) Date: **Dec. 12, 2014**

(87) PCT Pub. No.: WO2013/185604

PCT Pub. Date: Dec. 19, 2013

(65) Prior Publication Data

US 2015/0137192 A1 May 21, 2015

(30) Foreign Application Priority Data

Jun. 12, 2012 (CN) 2012 1 0192221

(51) Int. Cl.

H01L 29/808 (2006.01) *H01L 29/10* (2006.01)

(Continued)

(52) U.S. Cl.

CPC *H01L 29/808* (2013.01); *H01L 29/1058* (2013.01); *H01L 29/1066* (2013.01);

(Continued)

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,910,664 A * 6/1999 Ajit H01L 27/0716

6,037,238 A 3/2000 Chang et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN 101901805 A 12/2010 CN 101969072 A 2/2011 (Continued)

OTHER PUBLICATIONS

International Search Report dated Sep. 19, 2013. Written Opinion of the International Searching Authority dated Sep. 19, 2013.

Primary Examiner — Zandra Smith Assistant Examiner — Lawrence Tynes, Jr. (74) Attorney, Agent, or Firm — Polsinelli PC

(57) ABSTRACT

The present invention discloses a high voltage JFET. The high voltage JFET includes a second conductivity type drift region located on the first conductivity type epitaxial layer; a second conductivity type drain heavily doped region located in the second conductivity type drift region; a drain terminal oxygen region located on the second conductivity type drift region and at a side of the second conductivity type drain heavily doped region; a first conductivity type well region located at a side of the second conductivity type drift region; a second conductivity type source heavily doped region and a first conductivity type gate heavily doped region located on the first conductivity type well region, and a gate source terminal oxygen region; a second conductivity type channel layer located between the second conductivity type source heavily doped region and the second conductivity type drift region; a dielectric layer and a field electrode plate located on the second conductivity type channel layer. Wherein a drain electrode electrically is led out from the second conductivity type drain heavily doped region; a (Continued)

